阅读历史 |

第765章 765.隐蔽 狡猾 善变(2 / 2)

加入书签

为了确定局部照射对肿瘤生长和MDSCs的影响,当肿瘤直径达到7.5mm时,我们使用大分割RT(20GyF)治疗皮下LLC肿瘤。放疗导致肿瘤进展延迟长达一周,在第7至第10天的最小体积约为500mm3,但此后肿瘤开始再生。根据放疗前后肿瘤生长曲线,我们选择放疗后第3天为再生前生长,放疗后1周为肿瘤体积最小时为再生开始,放疗后2周和3周为再生阶段。肿瘤组织苏木精-伊红染色显示,与未治疗的肿瘤相比,放疗后的肿瘤中有更多的浸润性炎症细胞。随后的CD11b特异性免疫组化染色显示,大多数炎症细胞是CD11b+髓系细胞,这表明局部照射可能导致MDSCs的积累。为了证实我们的假设,我们在局部照射后的不同时间点对总MDSCs和这两个亚群进行了流式细胞术分析。局部照射后,放疗后肿瘤浸润MDSCs的比例比未治疗肿瘤高2倍(ctrlvs.RT=21.33±3.29%vs.44.10±3.00%,P0.001)。PMN-MDSCs与总MDSCs具有相同的增加趋势(ctrlvs.RT=16.37±2.47%vs.38.66±4.24%,P0.001),而M-MDSC比例保持在约0.1%,且与肿瘤大小和治疗无关。外周血情况同肿瘤组织。

为了确定受照射肿瘤中PMN-MDSC的逐渐积累是否有助于LLC肿瘤的再生长,或者这种积累是否仅仅是肿瘤生长的结果,使用抗Ly-6G单克隆抗体来消耗MDSC.抗Ly-6G抗体的应用显着降低了肿瘤部位和外周血中PMN-MDSC的频率(P0.05)。此外,用抗Ly-6G抗体治疗大大延迟了照射后的再生,这表明PMN-MDSC的募集对肿瘤再生至关重要。

虽然PMN-MDSCs利用一系列机制来抑制抗肿瘤免疫反应,这涉及到许多免疫细胞和细胞因子,但对CD8+T细胞的抑制无疑是最重要的。为了确定RT后PMN-MDSCs诱导的免疫抑制是否依赖于CD8+T细胞,我们通过流式细胞术评估了CD8+T细胞的数量和功能。

如图3D所示,CD8+T细胞的百分比随着照射从11.71±2.31%下降到2.42±0.62%(P0.01)。PMN-MDSC耗竭逆转了这种下降(RTvs.RT+anti-Ly-6G抗体=2.42±0.62%vs.20.12±3.92%,P0.01)。为了更好地了解CD8+T细胞浸润肿瘤部位的功能状态,我们测量了CD8+T细胞内部和表面上IFN-γ、CD28和PD-1的表达。局部RT显着降低了CD8+T细胞分泌IFN-γ的比例,从33.064.53%降至13.252.08%,并增加了表达PD-1的CD8+T细胞的比例(ctrlvs.RT=253.20±57.03auvs.538.80±98.76)au,P0.05)。

CD28表达未观察到显着变化。当抗Ly-6G抗体被给予辐照小鼠时,IFN-γ分泌达到与未处理的LLC小鼠相同的水平(29.74±3.55%),而与辐照小鼠进行比较抗Ly-6G抗体处理后的PD-1表达没有变化小鼠。因此,在这部分我们建议PMN-MDSCs通过抑制CD8+T细胞促进放疗后肿瘤的再生。PMN-MDSCs不仅抑制了TME中CD8+T细胞的数量,而且还抑制了其活性。

为了确定辐照诱导MDSCs的抑制机制,我们进行了免疫组化染色及iNOS和ARG1活性检测。肿瘤切片的免疫组化染色显示,局部RT增强了ARG1的表达,但没有增强iNOS的表达。ARG1活性测定表明,局部照射显著提高了ARG1的活性,从0.400.15UL提高到3.780.39UL((P0.01)。相比之下,NO荧光标记的iNOS活性检测显示,辐照和未处理的肿瘤组织样本的荧光强度相似。

PD-L1的表达是MDSCs的一种新型免疫抑制机制。然后我们询问PD-L1上调是否是RT后MDSCs介导的免疫抑制的机制之一。通过流式细胞术分析辐照后MDSC中PD-L1的表达。图4E显示,与未处理组相比,受照射肿瘤的MDSC中的PD-L1表达在照射后不久显着增加(照射后第三天:ctrlvs.RT=443.9±175.3auvs.1328.0±324.3au,P0.05).然而,此后PD-L1表达继续下降,局部照射组在照射后第3周显着低于未治疗组(ctrlvs.RT=1,465.0±399.6auvs.407.5±164.8au,P0.05)。外周血中MDSCs的PD-L1表达与局部肿瘤部位的表达趋势相同。

以上数据表明ARG1表达的上调是照射后PMN-MDSCs抑制功能的合理机制。然而,不涉及PD-L1和iNOS的调节。为了进一步证实这一假设,在辐射后通过灌胃给予ARG1抑制剂nor-NOHA。10mgkgdnor-NOHA有效地将ARG1活性从3.780.39UL降低到2.020.25UL(P0.01)。

RT后给予nor-NOHA显着增加CD8+T细胞比例(RTvs.RT+nor-NOHA=2.420.62%vs.6.140.64,P0.01),并伴有肿瘤再生延迟。iNOS抑制剂1400W对肿瘤再生长没有影响。

我们的结果表明,RT通过上调肿瘤内PMN-MDSC的百分比和ARG1活性来促进肿瘤免疫逃避。推测抑制PMN-MDSCs及其ARG1活性可能是一种新的抗肿瘤策略是合理的。越来越多的证据表明,PDE5抑制剂可以抑制TB小鼠和癌症患者MDSC中iNOS和ARG1的活性和表达。因此,通过灌胃给予西地那非20mgkgd,以研究它是否可以促进RT的抗肿瘤作用并阐明潜在机制。如图5B所示,正如我们预期的那样,西地那非延迟了照射后的肿瘤再生长,这与阳性对照Nor-NOHA相当。TME的免疫特征表明,当给予西地那非时,肿瘤内PMN-MDSC的比例从38.66±4.24%下降到23.57±2.38%。

此外,西地那非也显着降低了ARG1的表达。为了进一步检查西地那非对MDSC的抑制是否真的导致抗肿瘤免疫增强,我们分析了肿瘤内CD8+T细胞的比例和活性。流式细胞术分析表明CD8+T细胞的百分比从2.42±0.62%增加到7.21±1.22%。

此外,当给予西地那非时,CD8+T细胞分泌的IFN-γ也显着升高。因此,我们证实PDE5抑制剂西地那非通过调节PMN-MDSCs改善了照射后肿瘤免疫微环境。西地那非联合放疗可能是提高放疗疗效的一种有前景的策略。

工作揭示了PMN-MDSCs中ARG1通路介导RT后肿瘤再生的新机制,如图6所示。我们认为,PMN-MDSCs是辐照招募的主要亚型,而不是M-MDSCs。在广泛的免疫抑制机制中,ARG1的上调和激活是PMN-MDSCs在放疗后抑制CD8+T细胞的主要机制。为了克服PMN-MDSCs引起的免疫抑制,我们提出并证明,sildenafil和RT联合使用降低了PMN-MDSCs在TME内的募集和免疫抑制作用,激活了CD8+T细胞应答,导致肿瘤生长延迟。综上所述,我们的研究结果为缓解免疫抑制TME以提高RT治疗效果提供了一种新的解决方案。虽然所有这些结果都是在LLC小鼠模型中进行的,但同样的机制是否适用于其他肿瘤模型尚不清楚。此外,在不同的辐射方案下,MDSCs及其亚型如何影响TME仍未确定。因此,这些问题还需要进一步的研究来解决。

↑返回顶部↑

书页/目录